AFRL-IF-RS-TR-2001-238
Final Technical Report
November 2001

DESIGNEXPERT

CoGenTex, Inc.

Lee Ehrhart, Tatiana Korelsky, S. Daryl McCullough, Joseph McEnerney, Benoit
Lavoie, Scott Overmyer, Owen Rambow, and Franklin Webber

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20020116 189

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-238 has been reviewed and is approved for publication.

APPROVED: ?O’C‘—U\'JC\N\ BQD

ROBERT M. FLO
Project Engineer

FOR THE DIRECTOR: /\\9%“’(?\) &q%

JAMES W. CUSACK, Chief
Information Systems Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFSB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 07040188

Public reporting burden for this collection of informaticn is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, 1o Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project {0704-0188), Washingtan, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
NOVEMBER 2001 Final Jun 96 - Oct 99
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
DESIGNEXPERT C - F30602-96-C-0076
PE - 62702F
PR - 5581
6. AUTHOR(S} TA - 32

Lee Ehrhart, Tatiana Korelsky, S. Daryl McCullough, Joseph McEnerney, Benoit WU - 13
Lavoie, Scott Overmyer, Owen Rambow, and Franklin Webber

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
CoGen Tex, Inc. REPORT NUMBER

840 Hanshaw Road N/A
Ithaca New York 14850

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES} 10. SPONSORING/MONITORING
Air Force Research Laboratory/IFSB AGENCY REPORT NUMBER

525 Brooks Road

Rome New York 13441-4505 AFRL-IF-RS-TR-2001-238

11. SUPPLEMENTARY NOTES
Air Force Research Laboratory Project Engineer: Robert M. Flo/IFSB/(315) 330-2334

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. ABSTRACT Maximum 200 words)

Many failures of software systems may be traced to inadequate consideration of systemwide requirements such as system
security, reliability, and usability. None the less, commercially available computer-aided software engineering tools do not
provide any special assistance for satisfying them, instead concentrating on a system's functionality. This report presents
DesignExpert, a knowledge-based tool intended to aid system developers and other stakeholders to effectively address
system-wide requirements. The tool elicits requirements, analyzes needs, generates design alternative, and suggest
evaluation strategies.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Computer-Aided Software Engineering, Computer Security, Fault-Tolerance, Human-Computer 64
Interaction 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Standard Form 298 gRev. 2-89) (EG)
Prescribed by ANS| Std. 239.18
Designed using Perform Pro, WHSIDIOR, Oct 94

Contents
1 Introduction 1/2
2 DesignExpert 3/4
2.1 Introduction v o v v i e 3/4
2.2 System-Wide Requirements 3/4
2.2.1 - Importance of System-Wide Requirements 3/4
2.2.2 Communicating about System-Wide Requirements 5

2.2.3 The Need for Support in the Development of System-Wide Requirements 6

2.3 System OVerviewt 7
2.4 The Security Assistant: Supporting System Integrity8
2.4.1 SA’s methodology of system description 9
2.4.2 Automatic reasoning for security analysis and advice 10

2.5 The Fault Tolerance Assistant: Supporting System Reliability o110
2.6 The Human-Computer Interaction Assistant (HCIA) 13
2.7 SUMMAIY . . . v v v e e e e e et e e e e e e 15
3 The Fault Tolerance Assistant 16
3.1 Overview of FTA e 16
3.2 FTA Support for Potential Users 16
33 Inputsto FTA 17
3.3.1 Requirements e 17
332 System Model 18
34 Outputsfrom FTA e 19
34.1 Simulation e 19
34.2 Desigh AdVICE . . o o o v ot .20
4 The Security Assistant 21

4.1 Overview of SA, .21
4.2 Classes of Users Supported B 21
4.2.1 System Designers 22
4.2.2 System Certifiers 22
4.2.3 System Administrators 22
4.3 System Decomposition, 22
4.3.1 Architectural Levels for Systems of Systems 23
4.4 Internal Components 23
4.5 Automatic Reasoning 24
4.6 Example Use of Security Assistant 24
4.7 Summary and Future 28
Automatic Explanation Generation in DesignExpert 34
9.1 Expert System Explanation 34
8.2 Previous Work35
5.3 Types of Knowledge in Explanation 36
0.4 The Security Assistant 37
9.4.1 The Expert System: Reasoning Domain Knowledge 38
5.4.2 The Content Representation Graph: Communication Domain Knowledge 38
9.4.3 Text Planning: Domain Communication Planning 40
5.5 Methodology 42
5.6 Conclusion 43
The Human-Computer Interaction Assistant 44
6.1 Overview of HCIA 44
6.2 The HCIA Advisor 45
6.3 The HCIA Critic 48
6.4 HCIA Critic: Support for Yale's Web Requirements and Guidelines 52
55

Bibliography

ii

List of Figures

Figure 2.1: Sample FTA Analysis 12
Figure 4.1: SA Concept Relation Model 25
Figure 4.2: Sample MPATS System Architecture 26
Figure 4.3: SA survey screen for system-wide security environment 27
Figure 4.4: Summary of SA survey for system-wide security environment 28
Figure 4.5: Survey Navigation Tool with access to textual summaries 30
Figure 4.6: SA recommendations for MPATS system 31
Figure 4.7: Automatically generated explanation of SA recommendation 32
Figure 4.8: SA survey screen for the host 33
Figure 4.9: Summary of SA survey for a host 33
Figure 5.1: The domain model 39
Figure 5.2: The content representation graph for the example, representing the
Full CDK 41
Figure 5.3: The interactive hypertext 41
Figure 5.4: The fluent, hyperlink-free text 41
Figure 6.1: Sample HCIA Advisor questionnaire for task characteristics 45
Figure 6.2: Sample HCIA Advisor design advice for data and information
Coding 47
Figure 6.3: Sample HCIA Advisor evaluation advice 48
Figure 6.4: Sample HCIA Critic main page 49

Figure 6.5: Sample HCIA Ciritic report 50

iii

Chapter 1

Introduction

Many failures of software systems can be traced to inadequate analysis of system-wide re-
quirements such as reliability, security, and usability. DesignExpert is a software tool that
helps its user to address such system-wide requirements effectively. In the DesignExpert
approach, the user is guided to state the system-wide requirements clearly and is also
made aware of design alternatives for satisfying the stated requirements. Using a variety
of knowledge-based techniques, DesignExpert helps a user who is not an expert in reliability
or security techniques to evaluate alternative requirements and designs. DesignExpert used
in conjunction with commercially available tools for building software functionality will re-
duce the risk that reliability or security requirements might be neglected during the design
process.

DesignExpert consists of three components:

1. a Security Assistant (SA);
2. a Fault Tolerance Assistant (FTA);

3. a Human-Computer Interaction Assistant (HCIA).

This report describes the overall system and the shared vision that underlies its three com-
ponents in Chapter 2. The three components, the FTA, SA, and HCIA, are described in
more detail in Chapters 3, 4, and 6, respectively. In Chapter 5, we discuss in more detail
the explanation facility for the reasoning of the SA.

1/2

Chapter 2

DesignExpert

2.1 Introduction

After more than three decades of experience and tremendous advances in hardware and
software technologies, organizations with critical system requirements are finding that the
systems delivered still fail to meet the operational need. In many cases, the problem lies
in a failure to correctly identify and address the system-wide requirements (such as usabil-
ity, security, fault-tolerance, maintainability, and real-time requirements) that define the
quality and effectiveness of system performance. Commercially available computer-aided
software engineering (CASE) tools do not provide any support for identifying and meeting
system-wide requirements, concentrating exclusively on developing and rapidly prototyp-
ing application domain functionality. A considerable body of knowledge about system-wide
properties has accumulated and can be made available to developers.

This report presents DesignExpert, a computer-aided software engineering (CASE) tool in-
tended to aid system developers and other stakeholders to effectively deal with system-wide
requirements.

This overview over the system presents an overview of system-wide requirements and the
related life cycle development issues in Section 2.2. Section 2.3 follows with an overview of
DesignExpert, and Sections 2.4, 2.5, and 2.6, respectively, discuss in detail the three domains
of expertise it supports: human-computer interaction, security, and fault tolerance.. The
paper concludes with a brief discussion of a formal evaluation effort.

2.2 System-Wide Requirements

2.2.1 Importance of System-Wide Requirements

System-wide requirements, often called nonfunctional requirements, define and constrain
most or all of the functional modules of a system rather than a small subset (Davis, 1994).
Common examples of system-wide requirements are the performance, usability, or maintain-
ability of a system. DesignExpert concentrates on three particular system-wide requirements:

3/4

security, fault tolerance, and human-computer interaction. Each of these requirements is
both non-functional and system-wide:

e A system is secure if it protects data in specific ways, from unauthorized disclosure
or tampering, or from unavailability. Security differs from functionality because data
protection may be needed regardless of how the system is expected to process its data.
Security can sometimes be enforced in a single module, a gateway to the system, but
more typically it depends on the interaction of many modules that form the trusted part
of the system. A mistake in implementing one of these modules can easily compromise
the security of the entire system.

e Similarly, a system is considered fault tolerant if it will continue to function correctly
in spite of one or more failures of its components. Fault tolerance should not change a
system’s functionality much, if at all, but rather should protect that functionality from
specific kinds of failures. Because failures can occur in any module, fault tolerance is
necessarily a system-wide concern. '

e Finally, human-computer interaction design involves the allocation of tasks between
operator and system, presentation of information, and the ergonomics of interaction.
Thus, human-computer interaction involves more than the functionality of the system’s
external interfaces — it involves the overall system concept.

Thus, each of these requirements depends on most or all of the system; none could be
satisfied simply by adding or fixing a single module unless most or all of the other modules
were already designed with the system-wide requirement in mind. Any new module added
to the system would be affected by these system-wide requirements. As a result, while
system-wide requirements are important throughout the software engineering process, they
are particularly important at the early stages: requirements gathering and formulation, and
design.

2.2.2 Communicating about System-Wide Requirements

System engineering is a complex cognitive task involving many stakeholders with specialized
knowledge, needs, and expectations. As in all cooperative human problem-solving tasks,
communication among stakeholders plays a crucial role in successful system engineering. If
automated tools are used, the need for successful communication extends to the interac-
tion between human stakeholders and the automated tools. Communication is particularly
important during the requirements gathering and analysis phase, since this phase involves
the elicitation and interpretation of informally expressed domain knowledge, and it involves
a great number of stakeholders of different technical background (clients, domain experts,
requirements engineers, system engineers, end users). The requirements engineer must ob-
tain information about the domain and requirements from domain experts and clients . The
requirements engineer must formulate these requirements and validate them with the end
user or client, who is typically not versed in certain software engineering methodologies and

notations. However, the effort of pinpointing the exact requirements is crucial if subse-
quent system development is to avoid the costs associated with past software disasters or

retrofitting.

In addition, since system-wide requirements can imply a wide array of very specialized knowl-
edge, we must assume that most of the stakeholders involved in systems engineering are not
experts in all the relevant types of system-wide requirements. Lack of expertise makes com-
munication even more difficult, and even more crucial: for example, a client will need to
know at all stages of the requirements engineering process why certain security requirements
have been posited by the requirements engineer, and he or she needs to do be able to have
the requirements explained in a manner that is comprehensible to him or her.

Finally, the standardization of documentation procedures (such as those defined by DoD
STD 2167A or IEEE Std 1498) places considerable burden on the participants in the system
engineering effort, especially in those domains in which they are not experts.

2.2.3 The Need for Support in the Development of System-Wide
Requirements

While system functionality typically can be changed by modifying a few modules, the non-
functional requirements constrain how functionality is delivered by the system. Because a
system-wide requirement affects many or all modules in a system, “retrofitting” the sys-
tem to satisfy the requirement usually has a considerable cost. There is a pressing need
for low-cost design, development, and testing environments that permit assessments about

which investments in system-wide requirements make sense and which should be avoided.
Support for these assessments must be available in an understandable form to the persons
making acquisition decisions for an organization and shared with the teams responsible for

developing and maintaining the system. ‘

The integral nature of system-wide requirements demands their consideration across the de-
velopment life cycle to ensure delivery of expected functionality. Developers need economical
and effective tools and methods for defining system-wide requirements, designing the requi-
site qualities into the functional solutions, and evaluating software products (e.g., designs,
prototypes, and completed systems) with respect to the system-wide requirements.

Specifically, we have identified the following needs:

e Requirements engineers who are not specialists in a particular type of system-wide
requirement may not know what information to elicit from clients and domain experts.

e Requirements engineers may have difficulty in drafting relevant documents because
they do not know what needs to be recorded, nor what language is appropriate.

e Clients (such as Government program managers), requirements engineers, and design-
ers may have problems estimating what requirements can be realistically met within

the given constraints of time and budget.

e System designers may not know how to address certain system-wide requirements.

6

However, despite the recognized importance of system-wide requirements, commercially
available computer-aided software engineering (CASE) tools do not provide any special as-
sistance for satisfying them, instead concentrating on support for developing and rapidly
prototyping a system’s functionality. Meanwhile, a considerable body of knowledge about
system-wide requirements has been accumulated and can be made available to developers.
The goal of DesignExpert is to make this knowledge available to different stakeholders in
convenient manner. :

2.3 System Overview

DesignExpert is a knowledge-based CASE tool composed of three assistants, each giving
advice in its own domain of specialization:

e The Human-Computer Interaction Assistant (HCIA) provides advice on the des1gn and
evaluation of information presentation and interaction protocols.

e The Fault-Tolerance Assistant (FTA) provides advice on employing hardware and soft-
ware resources to achieve a given level of fault-tolerance.

o The Security Assistant (SA) provides advice on issues relating to data security.

The three assistants are conceptually independent of each other. This means that the user
could use a single one of the three assistants; there is no need to use all three assistants at
each session or for each project. At the same time, they share basic concepts of interaction.
Each elicits information from the analyst by requesting answers to specific questions about
the system to be designed. Each provides a recommendation and/or analysis of the data.

DesignExpert supports the software practitioner who is not an expert in the particular do-
main of system-wide requirements and allows him or her to use this knowledge from the
earliest phase of requirements analysis through testing and validation of the resulting sys-
tem. Specifically, the tools help the analyst:

e define organizational needs and the corresponding system-wide requirements;

o formulate required documents and documentation;

e evaluate requirements in terms of constraints of project time line and budget; and

e cvaluate designs for conformance to identified requirements.
The analyst can explore the recommendations and/or analyses given by one of the assistants
by changing the system information, and by obtaining explanations in English of the recom-

mendation. The system can also generate reports (in English) summarizing the information
about the system and/or the recommendations.

DesignExpert addresses all phases of systems engineering, but concentrates on the require-
ments analysis and design phases. The tool itself does not presuppose any particular software

7

engineering process and can be used in the context of any processes, as long as the process
has steps corresponding to the standard phases. In addition, the flexible report generation
facility can easily be adapted to help satisfy the reporting and documentation needs of any

specific process.

To increase its utility, DesignExpert is implemented using a platform-independent architec-
ture. The advisory function is implemented in CLIPS 6.0. The user interface is implemented
in HTML using CGI and JAVA to handle input/output and serve sessions. This interface
architecture permits economical use of multimedia on UNIX, Windows, and Macintosh plat-

forms.

2.4 The Security Assistant: Supporting System In-
tegrity

The Security Assistant (SA) supports the formulation of security requirements and choice of
security mechanisms to meet those requirements.’ In this process, SA helps the user balance
the cost of countermeasures and the likelihood that a threat will be actualized, on the one
hand, with the value of assets and the importance of the system mission, on the other.

A security requirement is a written formulation of the objective of opposing some attack
on, threat to or vulnerability of the given system. System security requirements derive from
several sources, among which the most noteworthy are:

e Mission needs and concepts of operations

Risk and threat assessments of potential deployment sites

Requirements stipulated for similar systems

Organizational security policies

Mandatory requirements (for government systems)

The SA uses a series of HTML surveys (questionnaires) to gather security-related informa-
tion about a system’s functional architecture, and its deployment environment into the SA
repository and analyze that data for consistency and completeness.

The SA produces two kinds of output:

e The SA automatically generates reports in fluent English that summarize the informa-
tion entered into the repository.

e Civen the information about the system functionality and its deployment environmnent,
the SA provides a critique of chosen security measures and recommends countermea-
sures of appropriate strength to offset known or potential risks. This critique is also
presented to the user in the form of a report automatically generated in fluent English.

1For a more complete exposition of the theoretical approach underlying the SA and the FTA, sce (Webber
et al., 1998). ‘

The Security Assistant is designed to provide support to users during the pre-implementation
phases for new systems and maintenance and upgrade phases for legacy systems. Several
different groups of users might benefit from the SA’s advice:

1. Requirements engineers can use SA to maintain a representation of the intended sys-
tem’s security requirements as the system’s requirements evolve (and, later, as the
system itself evolves). They can use SA to ascertain that they have gathered the rele-
vant information. The report generation capability facilitates the communication about
requirements with other stakeholders and the documentation of the requirements.

2. System designers benefit by including security as a system wide property entertwined
with functional and architectural design and not as an add on. Moreover, this group
benefits because SA can handle generic security concerns thus giving them the freedom
to concentrate on the really unique security problems that are specific to each system.

3. Government system certifiers, who are responsible for determining the residual risk
associated with deploying these systems for a given mission in a given environment of-
ten have to treat each case separately. Moreover, they must contend with a mountain
of required paper work as well as perform technical analyses. This group benefits by
having a DITSCAP (DoD Information Technology Security Certification and Evalua-
tion Process) compatible framework in which to evaluate a system. A future version of
SA is planned that will provide comprehensive support DITSCAP’s System Security
Authorization Agreement (SSAA) as a living document and will provide certifiers with
the means to assign ITSEC classes to systems and make comparisons.

4. System Administrators and IT Managers benefit by having a tool that can help or-
ganize and analyze systems and networks that they are responsible for maintaining.
These professional are frequently tasked with enbancing such systems by deploying
new applications or hosts. This can cause security compromises for either new or old
components. These decision makers, who have to bear the responsibility for the choices
they make, need objective and cost conscious advice that reflects the IT system mission
as well as the risks to which it is subjected. Currently, decision makers rely solely on
the advice of domain experts.

2.4.1 SA’s methodology of system description

Modern distrubuted systems applications typically consist of hardware and software compo-
nents that are themselves systems. This leads to the notion of ”system of systems”. From
a security standpoint this is a very important perspective since not only must component
systems be trustworthy but also they most be combined in such a way that the resulting
system of systems is also trustworthy. The Security Assistant has been designed with this
perspective in mind.

A system under study is described as a set of interrelated functional components which are
deployed (and possibly replicated) at sites. Viewed from the topmost level the target system
has a global operational environment which is made up of the site environments. Threats

to security come from these enviroments and can arise from natural or human sources. It is
this threat space that characterizes the risks run by the target system. Ultimately, security
of the target system is achieved by determining and implementing a Security Policy which
counters the threats and enables the system missions to serve its clients while protecting
its assets. Moreover, the importance of missions and the value of assets must be weighed
against the cost of countermeasures to the threats in the environment.

Although a target system security policy is the ultimate goal, elements of it are often known
in advance or are dictated by organization policy. For these reasons, several security policy
elements appear as both inputs and outputs of the SA.

In SA’s methodology, the security-related information about the system is gathered at four
levels:

1. The system-wide level. This survey gathers information about the system’s functional
architecture, its missions and clients, its main assets, its system-wide security charach-
teristics, and the list of sites that constitute its deployment environment.

9. The site level. A site is seen by SA as a collection of hosts that are usually concentrated
geographically in one region, logically related by common purpose, physically connected
to each other by a LAN, pre-exist the target system, and often perform functions
unrelated to the target system. The site survey gathers information about what system
assets are deployed at the site, detailed information about the site’s physical, computing
and communications environment, as well as its detailed security characteristics.

3. The host level. Hosts are seen by SA as connected to the site to provide the platforms
onto which target system functional components arc deployed. Hosts are described by
specifying hardware configuration, operating system, the set of deployed target system
software components which implement system assets described on the higher levels,
and the suite of other installed applications (if any) and libraries.

4. The software component level. The software component level provides the user with a
place to characterize how host resources are shared between the target system software
and peer software on the same host. The more detailed information about the peer
applications running on each host is available, the more security vulnerabilties can be
detected and countered during the requirements phase.

2.4.2 Automatic reasoning for security analysis and advice

SA uses an expert system to analyze and critique user descriptions of a system under study.
The current SA prototype is targeted primarily at the requirements analysis phase of sys-
tem development and not at the maintenance phase or the reengineering of the security
characteristics of the legacy systems (the SA’s framework nevertheless is gencral enough to
accomodate these latter tasks as well). Consequently, the reasoning engine of the current
uses information of the two higher levels (system-wide and site level) but not of the two lower
Jevels (host and software component) which are rarely specified in detail at the requiremetns
phase.

10

Knowledge of security derived from expert experience, publications and DoD standards such
as the TCSEC and the Common Criteria have been encoded in rules that are activated by
the presence or absence of relevant facts in the SA’s repository.

By determining what types of damage an asset or mission can sustain, what kind of attack
methods are possible, how likely it is that an attack can be mounted and what system
defenses are available to counter attack methods it is possible to formulate inference engine
rules that reflect rules of thumb like the following:

e Make sure that every asset is protected from every known potential attack method.

e Balance the cost of the system defenses with the asset values and the mission impor-
tance.

2.5 The Fault Tolerance Assistant: Supporting System
Reliability

The Fault Tolerance Assistant (FTA) is DesignExpert’s support for developing reliable dis-
tributed computer systems. Using FTA helps to posit realistic reliability and availability
requirements, and increases confidence that a system’s design satisfies its reliability and
availability requirements.

FTA surveys its user’s requirements for system reliability and availability. A reliability
requirement tells how likely it is for a system to give continuously correct operation for a
given duration. An availability requirement tells how likely it is for a system to be operating
correctly at any given time. Several similar requirements can also be specified in FTA
(Siewiorek and Swarz, 1982):

the mission time;

the mean time to failure (MTTF);

the mean time between failures (MTBF);

the mean time to repair (MTTR).

The availability, MTBF, and MTTR requirements depend on the possibility that failed
components of the system can be repaired, while the others do not.

To analyze the system requirements, the FTA user must supply an abstract model of the
system. This model is hierarchical: every component and subcomponent may be composed
of other subcomponents. The system model includes both hardware and software.

A textual representation of the model is built in the Acme architecture description lan-
guage(Garlan et al., 1997). We chose the Acme language to be the standard architecture
description for FTA because it is a simple language designed to allow easy translation to

11

the architecture description languages used by other tools. The Acme language also can be -
easily extended by associating attributes with each component of an architecture.

The system model can include the following attributes for each component:

e replication factors;

failure and repair rates;

number of failures tolerated in each replicated ensemble;

the failure model (e.g., Crash; Byzantine) assumed and the failure model guaranteed;

the assignment of each software component to the hardware component on which it
runs.

FTA Analysis

Run #1

System Requirements and Simulation Results

o Reliability:
O required: 95% for a 12 hour mission
o estimated: 97.0652 +/— 0.49505%
O design satisfies this requirement
s MTTF:
O required: 500 hours
O estimated: 619.205 +/— 63.1334 hours
O design may satisfy this requirement
O try running the sirulation again to improve the precision of this estimate
o Steady-State Availability:
O required: 99%
-0 estimated: 99.0174 +/- 0.15066%
O design may satisfy this requirement

O try running the simulation again to improve the precision of this estimate -

ot St

i
iClose

Figure 2.1: Sample FTA analysis

FTA produces these outputs:

12

1. A Monte Carlo simulation of the system model. This simulation assumes that each
atomic element of the system model undergoes failure and repair at constant rates.
The steps in the simulation can be made visual using a graphical architecture editor
developed at Key Software.

2. Estimates of reliability, availability, and other measures of goodness of a given system
model. To estimate reliability, mission time, and MTTF, the simulation is run many
times and the results averaged. To estimate availability, MTBF, and MTTR, a very
long simulation is run in which the system can fail and be repaired many times and
averages are computed from that single run. FTA also estimates the uncertainty in
each of these averages.

3. A critique of the attributes in the system model. FTA looks for several kinds of
inconsistencies in these attributes, including: whether the fault tolerance specifications
can be achieved given the model of failures; whether obvious failure correlations exist;
whether the failure model assumed by a component X can be guaranteed by the
components on which X depends.

4. Recommendations for increasing reliability. Improvements in reliability can sometimes
be had by increasing the degree of replication and sometimes by changing the allo-
cation of software components to processors(Nieuwenhuis, 1990). FTA estimates the
potential for such improvements using a ”quick and dirty” analysis rather than using
the computationally-intensive (but more accurate) Monte Carlo simulation.

For a sample of an FTA analysis output, see Figure 2.1.

FTA’s design advice should lead to better system models and ultimately to a sound judg-
ment of whether particular reliability requirements can be satisfied. If a model satisfies the
requirements, the number and kind of components in the model can be used to estimate the
final cost of building the real system.

The users of the FTA include the following groups:

o Customers (such as Government program engineers) and requirements engineers can
estimate whether requirements for fault-tolerance are realistic.

o System designers can ascertain that a system’s design satisfies its reliability and avail-
ability requirements.

FTA’s requirements survey can be reached from DesignExpert’s Security Assistant (SA) (see
section 2.4), thus coupling the two assistants together.

2.6 The Human-Computer Interaction Assistant (HCIA)

Human-computer interaction design embodies most of the system concept that is “available”
to the user to guide his/her mental model of the system. For example, the HCI design
incorporates such critical system design factors as:

13

e representation of information regarding the situational elements external to the system
(support systems, environment, threats, etc.);

e representation of system states and feedback to the operator on results of actions taken;

e allocation of tasks between the human users and the computer as determined by the
dynamics of the situation and the requirements of the methods selected to support

task performance;

e and modes in which users may interact with all of this information to explore situations,
develop hypotheses, generate options, select among alternatives, and implement their
decisions.

The goals of the HCIA, include support for the following issues:

1. Cognitive Engineering: Design of displays and interaction routines consistent with
what we know about human cognitive structures and processing; displays that are
consistent with human data organization and “storage,” and the way humans frame
problems, make inferences, generate options, and implement action;

2. Organizational Focus: Permitting the user to examine HCI designs in the context of
the larger system issues, such as its integration with other systems and coordination
across users, teams and organizations; '

3. Technology exploitation: Suggesting the innovative use of image, text and graphics pro-
cessing technology to support real-time animation, user or system-directed searches,
multidimensional displays, and “virtual” processing environments to improve the trans-
parency of the interaction between the users and their tasks;

4. Designing for error: design of information displays and interaction protocols for pre-
venting and controlling the impacts of operator error to improve system performance
and reliability; and

5. Evaluation: Suggesting techniques for evaluating the proposed HCI design and new
system concepts to identify potential risks not only to overall system performance, but
also to the system development effort.

The HCIA has two components. The HCIA Advisor addresses all phases except evaluation.
It was designed and implemented by Drexel University (under the supervision of Dr. Lee
Erhart, following previous work under the name DesignPro) and later reimplemented and
improved by CoGenTex. The HCIA Critic addresses the evaliuation phase. It was designed
and implemented by CoGenTex with support from Dr. Scott Overmyer of Drexel University.
The current version of HCIA Critic focuses on HTML-based interfaces.

14

2.7 Summary

The DesignExpert approach derives requirements from models of system and user needs at
varying levels of abstraction to enhance understanding and consideration of system-wide re-
quirements across the system development life cycle. In the earliest phases of development,
a broad-brush approach may be used by planners and analysts to estimate feasibility and
scope projects. The initial profiles and models can be elaborated during requirements anal-
ysis for greater specificity and used to generate and evaluate design alternatives. The report
facilities extend the documentation capabilities and provide a summary of requirements and
design issues for use by the implementation and testing teams.

The final prototypes of the three assistants have been implemented. DesignExpert will be
formally evaluated in the immediate future (using both a focus-group evaluation and a use-
based evaluation). We intend to report on the results of the formal evaluation in the final

paper.

15

Chapter 3

The Fault Tolerance Assistant

3.1 Overview of FTA

The dependability of computer software and hardware has been a central concern of system
designers since the first computers were built. Computer systems fail as the result of failures
in both their hardware and software components. If a system depends on a single component
then the failure of that one component can crash the entire system. In contrast, a fault
tolerant design prevents certain kinds of component failures from causing system failure.
Fault tolerance is achieved through adding redundancy, often redundant components, to a
system.

As more components are added to a system the probability of system failure tends to increase.
Thus, a distributed system with components running on many hardware elements will tend
to have more ways to fail than a centralized system built for the same purpose. Fault
tolerant engineering techniques use redundancy to counter this tendency by making system
failure less dependent on individual components. These techniques have become essential
for dependable design of large distributed systems.

The Fault Tolerance Assistant (FTA) is a tool to help with the development of dependable
distributed computer systems. Using FTA helps make certain that a system’s design, and
indirectly its implementation in code, satisfies the system requirements for dependability.

3.2 FTA Support for Potential Users

The FTA offers several kinds of assistance to its user:

e FTA helps its user to state the dependability requirements for a specific system. The
next section discusses the various kinds of requirement it supports.

e FTA estimates whether the requirements can be satisfied for a particular system model.

e FTA may recommend changes to the system model that improve dependability.

16

e FTA simulates the behavior of the system model as components fail and are repaired.
The simulation can be viewed pictorially.

FTA’s capabilities will be most useful to several different kinds of system stakeholders:

e System analysts will use FTA’s requirements analysis to gain quick feedback on the
feasibility of system-wide dependability requirements.

¢ System implementers will use FTA’s system modeling facilities to build fault tolerance
into the code according to a uniform plan for the entire system.

e Program planners will use FTA’s requirements analysis to get a rough estimate of the
eventual cost of a system.

While FTA may be useful at various stages of the software life cycle, its focus on requirements
analysis makes it most useful in the early stages of software development.

3.3 Inputs to FTA

3.3.1 Requirements

FTA surveys its user’s requirements for system reliability and availability. A reliability
requirement tells how likely it is for a system to give continuously correct operation for a
given duration, called the mission time. An availability requirement tells how likely it is for
a system to be operating correctly at any given time. Several similar requirements can also
be specified: the mean time to failure (MTTF); the mean time between failures (MTBF);
the mean time to repair (MTTR). The availability, MTBF, and MTTR requirements depend
on the possibility that failed components of the system can be repaired, while the reliability,
mission time, and MTTR do not. Requirements of these kinds are important for any system
that needs to tolerate the failures of some of its hardware components(Siewiorek and Swarz,
1982).

During the survey process the FTA user is prompted to input one or more system require-
ments. These requirements may be of different kinds, e. g., some may require reliability
while others may require availability. FTA assumes that all stated requirements must be
satisfied simultaneously by the system.

FTA’s requirements survey can be reached from DesignExpert’s Security Assistant (SA)
(see separate documentation of SA for more information), thus coupling the two assistants
together. There are two reasons to relate FTA to SA in this way. First, some users will need
to address security threats that involve failures of system components. Note that FTA helps
with the analysis of uncorrelated component failures but currently offers only limited help if
failures are correlated, for example, as a result of a malicious attack on the system. Second,
a combined FTA-SA requirements survey allows DesignExpert to present a uniform user
interface. That interface elicits the system requirements by identifying the threats that the

17

system must counter, whether those threats are from malicious security intruders or random
failure of computing hardware.

When used with SA, FTA offers its user explainations of the meaning of the various require-
ments.

3.3.2 System Model

To analyze the system requirements, the FTA user must supply an abstract model of the
system. This model is hierarchical: every component and subcomponent may be composed
of other subcomponents. The system model may include both hardware and software, and
both hardware and software may be hierarchically decomposed. Most components will be
given various attributes needed during requirements analysis.

The system model can include any of the following components and component attributes:

e hardware processors;
e hardware communication channels between processors;

e software processes;

e software communication channels between processes;

e replication factors for each process, processor, and communication channel;

e failure and repair rates for each process, processor, and communication channel;

e number of failures tolerated in each replicated ensemble;

e failure model (e.g., crash failures, Byzantine failures) assumed and guaranteed by each
component; '

e assignment of software components to hardware components.

In general, both hardware and software failures may be analyzed. Tolerating hardware
failures is the more traditional concern, but software fault tolerance(Avizienis and Kelly,
1984) may also be analyzed in this framework’.

The user may input the abstract model in any of several ways: textually, pictorially, or
by using HTML forms?. Regardless of which way is chosen, a textual representation of
the model is built in the Acme architecture description language(Garlan et al., 1997). We
chose the Acme language to be the standard architecture description for both FTA and
SA because it is a simple language designed to allow easy translation to the architecture
description languages used by other tools. The Acme language also can be easily extended

1Currently FTA assumes that atomic components, i.c., ones with no subcomponents, fail independently.
This assumption may be inappropriate, however, for software failures. Correlations between failures could
be included in a future version of FTA.

2DesignExpert does not yet fully support architecture description using HTML forms.

18

by associating attributes with each component of an architecture. All of the attributes of
the system model described previously are represented as Acme attributes in FTA.

The easiest way to input the abstract model in FTA is pictorially. A separate DesignExpert
component, the Graphical Architecture Design Editor (GADE), is used to produce a graph-
ical rendering of the system architecture. GADE can edit both the hierarchical structure of
components within a system and the FTA attributes of these components. GADE reads and
writes architecture descriptions in the Acme language.

3.4 Outputs from FTA

FTA produces three outputs:

1. a Monte Carlo simulation of the system model;
9. estimates of reliability, availability, MTTF, etc., for a given system model;

3. advice on how to correct or improve the system model.

3.4.1 Simulation

FTA’s basic mechanism for requirements analysis is simulation. The Monte Carlo simulation
begins with the system model. Each atomic component of the model, i.e., a component with
no subcomponents and that is not assigned to another, is made to fail independently and
randomly (hence the “Monte Carlo” adjective). The failure distribution is assumed to be
exponential decay, taking the failure rate of each component as constant. The effect of each
failure is propagated to other components: a component fails if too many subcomponent
failures have happened or if it is software running on a failed hardware component. If failures
propagate to the top level of the system model then the system has failed. Components may
also be repaired at a constant rate. The repair of a component is propagated to other
components (under the simplistic assumption that a mechanism exists to recover the state
of software running on repaired hardware).

A novel aspect of FTA is that the simulation can be visualized. The GADE tool, described
previously as the means for inputting the system model pictorially, can also display the steps
of the Monte Carlo simulation. In this animation of the system model, GADE shows the
effect of each failure and repair as it propagates through the system.

The Monte Carlo simulation is also used to estimate the reliability properties of the system.
To estimate reliability, mission time, and MTTF, the simulation is run many times and the
results averaged. To estimate availability, MTBF, and MTTR, a very long simulation is run
in which the system can fail and be repaired many times and averages are computed from
that single run. The averages computed for each of these reliability properties are uncertain
because the Monte Carlo gives only a finite sample of the possible system behaviors, so FTA
also estimates the uncertainty in each of these properties.

19

3.4.2 Design Advice

The basic FTA goal is to understand whether the system model satisfies the dependability
requirements. FTA compares the reliability and availability properties and their uncertainty
estimated from the Monte Carlo simulation with the requirements gotten from the user. The
user is advised whether the requirements are satisfied.

Regardless of whether the requirements are satisfied, FTA may provide its user with advice
on how to improve the system model. Several kinds of advice are offered:

e A critique of the attributes in the system model. FTA looks for several kinds of in-
consistencies in these attributes, including: whether the fault tolerance specifications
can be achieved given the model of failures (e.g., in general at least 3T + 1 component
replicas are needed to tolerate T' Byzantine failures); whether obvious failure corre-
lations exist (e.g., two replicas of the same process should not assigned to the same
processor); whether the failure model makes sense (e.g., a process assumed to exhibit
only crash failures should not be assigned to a processor that can exhibit Byzantine

failures).

e Recommendations for increasing reliability. Improvements in reliability can sometimes
be had by increasing the degree of replication and sometimes by changing the allocation
of software components to processors(Nieuwenhuis, 1990). FTA estimates the potential
for such improvements using a “quick and dirty” sensitivity analysis rather than using
the computationally-intensive (but more accurate) Monte Carlo simulation.

o Advice about whether to run the Monte Carlo simulation longer to get better statistics.
This advice is based on the estimate of the uncertainty in the reliability estimates. If
the uncertainty is so large that it is unclear whether the system model satisfies the
requirements then accumulating better statistics makes sense.

FTA’s design advice should lead to better system models and ultimately to a sound judge-
ment of whether particular dependability requirements can be satisfied. If a model satisfies
the requirements, the number and kind of components in the model can be used to estimate
the final cost of building the real system.

20

Chapter 4

The Security Assistant

4.1 Overview of SA

A security requirement is a written formulation of the objective of opposing some attack
on, threat to or vulnerability of the given system. The Security Assistant (SA) supports
the formulation of security requirements and choice of security mechanisms to meet those
requirements. System security requirements derive from several sources, among which the
most noteworthy are:

e Mission needs and concepts of operation

Risk and threat assessments of potential deployment sites

Requirements stipulated for similar systems

Organizational security policies

e Mandatory requirements (for government systems).

SA uses a series of automated surveys to gather such information about a system under study
and then analyzes that data for consistency and completeness. In addition, a deeper security
analysis provides a critique of various design choices and recommends countermeasures of
appropriate strength to offset known or potential risks. In this process, SA balances the cost
of countermeasures and the likelihood that a threat will be actualized on the one hand, with
the value of assets and the importance of the system mission on the other. The ultimate
goal for both SA and the user is to characterize, or at least bound, a system’s residual risk
in a cost conscious fashion.

4.2 Classes of Users Supported

The Security Assistant provides support to users during the pre-implementation phases for
new systems and maintenance and upgrade phases for legacy systems. SA support during

21

the requirements analysis phase deals largely with the process by which requirements are
determined and formulated to counter security threats. During this phase, various groups of
users benefit from security advice.

4.2.1 System Designers

System Designers benefit by including security as a system wide property entwined with
architectural design and not as an add on. Moreover, this group benefits because Security
Assistant can handle generic security concerns thus giving them the freedom to concentrate
on the really unique security problems that are specific to each system.

4.2.2 System Certifiers

System Certifiers who are responsible for determining the residual risk associated with de-
ploying an Information Technology (IT) system for a given mission in a given environment
often have to treat each case separately. Moreover, they must contend with a mountain
of required paper work as well as perform technical analyses. This group benefits by hav-
ing a framework compatible with the DoD Information Technology Security Certification
and Accreditation Process (DoD Instruction 5200.40,) (DITSCAP) in which to evaluate
a system. A future version of SA is planned that will provide comprehensive support to
DITSCAP’s System Security Authorization Agreement (SSAA) as a living document and
will provide certifiers with the means to assign Information Technology Security (ITSEC)
classes to systems and make comparisons.

4.2.3 System Administrators

System Administrators and IT Managers benefit by having a tool that can help organize and
analyze systems and networks that they are responsible for maintaining. These professional
are frequently tasked with enhancing such systems by deploying new applications or hosts.
This can cause security compromises for either new or old components. These decision
makers, who have to bear the responsibility for the choices they make, need objective and
cost conscious advice that reflects the IT system mission as well as the risks to which it is
subjected. Currently, decision makers rely solely on the advice of domain experts.

4.3 System Decomposition

Modern distributed systems applications typically consist of hardware and software compo-
nents that are themselves systems. This leads to the notion of "system of systems”. From
a security standpoint this is a very important perspective since not only must component
systems be trustworthy but also they must be combined in such a way that the resulting
system of systems is also trustworthy. The Security Assistant has been designed with this
perspective built in.

22

In order to work at the system of systems level, we take the perspective that the target
system under study is a set of interrelated component systems which are deployed (and
possibly replicated) at sites. Viewed from the topmost level the target system has a global
operational environment which is made up of the site environments. Threats to security
come from these environments and can arise from natural or human sources. It is this threat
space that characterizes the risks run by the target system. In addition, the target system
has missions, clients, dependents and assets which play an important role in deciding the sort
of security needed. Ultimately, security of the target system is achieved by determining and
implementing a Security Policy which counters the threats and enables the missions while
protecting assets and serving clients. Although a target system security policy is the ultimate
goal, elements of it are often known in advance or are dictated by organization policy. For
these reasons, several security policy elements appear as both inputs and outputs of the
Security Assistant.

An important first step on the road to defining a security policy is to determine what the
system wide security requirements are. This can be done by first identifying the needs that
motivate the target system. Moreover, the importance of missions and the value of assets
must be weighed against the cost of countermeasures to the threats in the environment.

4.3.1 Architectural Levels for Systems of Systems

In order to fully specify a target system, the Security Assistant expects the user to fill out
a set of surveys for each of the four architectural levels, namely the system-wide level (aka
top level), the site level, the host level, and the application level.

As indicated above, the view taken by the Security Assistant is that the top-level target
system is composed of sets of components deployed at a set of sites. Roughly speaking,
a site is a collection of hosts that: are usually concentrated geographically in one region,
are logically related by common purpose, are physically connected to each other by a LAN,
pre-date the target system, and perform functions unrelated to the target system.

Each site has an environment and a set of hosts that are connected to the site and provide
the platforms onto which target system applications are deployed. Hosts are described by
specifying: hardware configuration, operating system, the set of installed target system
software components, and the suite of installed applications and libraries.

The application layer provides the user with a place to characterize how system resources
are shared between the target system software and peer software. In addition, by providing
details about the applications running of each host, many security vulnerabilities can be
detected and countered during the requirements phase.

4.4 Internal Components
Security Assistant is based on data gathering technologies including a web based user inter-

face (employing Java, JavaScript, HTML in Netscape 3.0) which is used to collect security
related system design information. A multi-layered series of surveys is presented to the user

23

of Security Assistant. These surveys are based on HTML forms and are enhanced by means
of Java and JavaScript. :

Security Assistant is also built on knowledge based engineering and natural language tech-
nologies. An expert system shell called the C Language Integrated Production System(Giarratano
and Riley, 1994b) (CLIPS) is used to provide analytic operations such as consistency and
completeness checking of design data. In addition, security domain expertise encoded in
rules is used to generate advice about the security properties of the IT system under study.

In the SA system CLIPS rules representing security domain knowledge have been encoded

by Key Software, Inc. There is no provision in the current prototype for users to modify this

knowledge base.

Finally, Security Assistant uses a natural language text generation system (developed by
CoGenTex) to create reports and summaries based on the output of the domain rules that
fire in the expert shell’s inference engine. In addition, summaries of the surveys themselves
are produced to allow users to more easily detect oversights and errors.

4.5 Automatic Reasoning

As mentioned, SA uses an inference engine to analyze and critique user descriptions of a
system under study. Knowledge of security derived from experience, publications and DoD
standards such as the Trusted Computer System Evaluation Criteria(US , 1985) (TCSEC)
and the Common Criteria(National Institute of Standards and Technology et al., 1996) is
encoded in rules that are activated by the presence or absence of relevant facts. In addition,
SA employs a concept relation model, Figure 4.1, on which its reasoning is based.

The arrows in the figure are labeled in such a way as to define the relationship between
the concepts in the ovals. For example, defenses oppose attack methods and attack
methods cause damage (types). However, defenses can be assets which can sustain
damage (types).

By determining what types of damage an asset or mission can sustain, what kind of attack
methods are possible, how likely it is that an attack can be mounted and what system
defenses are available to counter attack methods it is possible to formulate inference engine
rules that reflect rules of thumb like the following:

1. Make sure that every asset is protected from every known potential attack
method.

2. Balance the cost of the system defenses with the asset values and the mission
importance.

4.6 Example Use of Security Assistant

In this section we describe a scenario of using Security Assistant for a Mission Planning
and Tracking System (MPATS). MPATS is an experimental secure distributed application

24

I R |

resides in has hostility

has can have
has/ has
can be
' MissionsJ (Assets canbe [personnel | Attack Agents
N \ . admits restrain have |require
h require tam
avel
have
Damage types cause Attack Methods

(importnncea (value)

can be
can be

material can be Defenses

oppose

have

l cost '

Figure 4.1: SA Concept Relation Model

Key Software, Inc.

(implemented but not deployed). MPATS is a typical system of systems. It consists of
several components distributed across several sites (see Figure 4.2). The purpose of MPATS
is to plan and track military airlift missions such as the one shown below.

The MPATS functional components are:

e FPLAN, for airlift mission planning, which deals with information on CONFIDEN-
TIAL and SECRET levels;

e FTRACK, for airlift mission tracking which also deals with information on CONFI-
DENTIAL and SECRET levels;

e Wx, for weather forecasting, which deals with UNCLASSIFIED information.
These components are deployed at the following sites:

e FPLAN is deployed only at Ramstein AFB, Germany, a site which supports operation
on multiple security levels, UNCLASSIFIED to SECRET;

e FTRACK is deployed on all three sites, where the sites Montijo NATO AB, Portugal
and Incirlik AFB, Turkey support operation only on two levels UNCLASSIFIED and
CONFIDENTIAL;

e Wx is deployed on all three sites.

25

! "+, '|Ramsteln AFB
Secret

Confidentlal
FTRACK

Montijg AB X\ Inclrilk AFB -4
|| Contidsntlal : sﬁ\ﬁh_ Confidential

g
'''''

Figure 4.2: Sample MPATS System architecture

In our scenario, during the requirements analysis phase, the SA user first describes MPATS
on the system-wide level, using the suite of system-wide surveys. The security environment
survey is shown in Figure 4.3.

The user can validate the entered system-wide information using an automatically generated
summary of this information (see Figure 4.4 for the summary of the information entered in
the survey of Figure 4.3). These summaries can be called from the corresponding surveys,
or the user can use a hierarchical representation of all information entered so far in order
to directly access menus for generating textual summaries (see Figure 4.5). This same
hierarchical representation is also useful for naviagtion purposes when a lot of information
has been entered. These facilities have been designed and implemened by CoGenTex.

The system-wide survey describes the target system from the functional point of view. The
deployment information is gathered by the lower level surveys: site, host, and software
component.

As it was explained above, the current automated security analysis works on the system-wide
level and takes into account only a part of the site security-related deployment information.
The attributes that are most implortant for the automated analysis are: site network con-
nections, security mechanisms at the site and site hostility degree.

In our scenario, from the system-wide and site surveys, SA learns that

e the Ramstein site has data at multiple levels,

e that for the flights database asset of the Fplan functional component deployed at
Ramstein disclosure, descruction/corruption, and substitution damage types are of
concern;

e that Ramstein and one other site, Montijo, are in benign environments, while the third
site, Incirlik, is in a potentially hostile environment;

e that Ramstein and Incirlik sites can communicate over the network;

26

[X):Netsgape:Security/
. p

This is part of the Security Assistant System Wide Survey of the Desien Expert Profect

System Wide Security Environment Survey

 The purpose of this survey is to gather information about the syster wide secwrity environment of the target system.
. Enviromental security hazards for a target system can arise from a variety of sources: the natural world, human
; activities as well as the computing and communications infrastructures,

1. Natural Physical

The natural world produces many kinds of threats that may compromise a target systems mission. These risks can arise
. from the number or location of system components as well as the forces of nature, It is Important to recognize them and
' take them into account because they can be the cause of security and reliability failures.

: * 1, Physical Threat Sources: (Choose zero or more)

2

N emw@qggwﬁ;
¥ sathglakel

* 2. Is the systemn operational environment geographically distributed? * yes no < unknown

* 3. Does the system consist of multiple physical components (L.e. "boxes®)? 4 yes no < unknown

4. The normal operational environments for the system or its components are(Check all that apply}:

Figure 4.3: SA survey screen for system-wide security environment (excerpt)

o that users at any site have a global identity allowing them access to the other sites on
the network; and

o that users at Incirlik use passwords as an authentication mechanism.

Based on this information, SA recommends installing non-discretionary security measures
at Ramstein and requiring stronger individual authentication at Incirlik and Montijo (see
Figure 4.6). he vulnerability in question is that, because of its greater hostility level, hos-
tile elements at Incirlik or Montijo couls potentially use stolen passwords and attack the
assets at Ramstein, using the user global identity feature of the MPATS system. The auto-
matically generated explanation of the reasoning underlying this recommendation is shown

in Figure 4.7. The DesignExpert explanation facility was designed and implemented by
CoGenTex; for a fuller presentation, see Chapter 5.

27

RiiNetscape Desigh Expert/~ Security EnvironmentSimmary:

System-Wide Security Environment

The system s geographically distributed and it consists of multiple physical components on a fixed
land base and on an aircraft. The system may be subject to such physical threats as carthquakes and
winds. The system can also be subject to such human threats as civil unrest, terrorism and hacking.

The system has exactly 5 users with the following roles: data entry, application client and application
administrator having a Secret clearance and system administrator and security administrator having
a Top Secret+ clearance. Other people with potential access to the system may include custodians
and guards.

The operating environment Is private and protected. It should be considered both benign and hostile.

The existing computing environment consists of COTS hardware running COTS software. The
system will share some resources with otherwise unrelated systems.

Routers; firewalls and satellite iinks connect some sites to external networks. Private networks are
used between sites. Data encryption will be used nelther within nor between sites in the system,

Figure 4.4: Summary of SA survey for system-wide security environment

If more detailed deployment information is available, the user can use host and software
component surveys to enter this information into SA’s repository. Figure 4.8 shows an
excerpt from the Host survey, and Figure 4.9 the correpsonding summary.

4.7 Summary and Future

The research prototype of Security Assistant demonstrates while many features could be
more strongly represented in a robust finished product, our basic goal has been largely
realized. Our objective was to develop a security tool on top of an underlying methodology
that would, in principle, be able to:

e Provide a comprehensive framework in which the system wide security properties can
be described;

e Provide a means to analyze and critique security relevant design choices;
e Identify requirements and give advice on how design choices may be improved;

e Suggest mechanisms to counter threats based on encoded knowledge in addition to
input provided by the user;

e Balance cost of security measures with system mission importance in the context of a
realistic threat assessment;

¢ Handle legacy systems as well as new designs;

Handle systems of systems and the environments into which they are deployed;

28

¢ Explain reasoning that is used to analyze and give advice;

¢ Provide a means to automatically generate reports and summary documents.

Security Assistant would benefit from certain new features. For example, a connection to or
synopsis of the CERT and FIRST databases of flawed software would be a big improvement.
Focusing on DITSCAP would make the tool more relevant to real users in DoD and its
contractor community.

The use of rule based reasoning in the security domain can be applied not only to systems
like SA but also to network monitoring. Software agents working cooperatively throughout
a network can be tasked to gather, pool and analyze security properties using Java based
versions of CLIPS such as Jess.

29

T@H“waw
. Reload

| ;‘ﬁ:ﬁ"‘%vlCéGéﬂéxz“ Ing

B~ DB db . : Sysmmn }Dmcmpm@m
| &~ USER benoit o
| E] PROJECT p Ovewmw s
: - SYSTEM s : TR
E USER sample e Identificadon
B3, PROJECT de | o Environment
B B BATS ' wmw-—nﬁ\—%w—-
5 : S - O Migsion SRR
B . SITE Ramstem 2 R 0 Extemel Assets -
) S E]""E HOST Gauss Ao Internsl Assers.
g - SW fldb .) Rellabﬂlﬁ[.
i Eh SITE Montijo ' . o
e | Bl HOST Jose :
b fe SW fldb ‘
&, SITE Incirlik

ot E}-, HOST Sarai
3 e SW fldb
s B, HOST Sar
i i SW fldb
B SYSTEM foo

i

&, PROJECT demo

E] CSYSTEM vi
- SITE ramstein

Figure 4.5: Survey Navigation Tool (left pancl) with access to textual summaries (right
panel)

30

s st o e L, PR

[Metscape: Design Recommendations

Figure 4.6: SA recommendations for MPATS system

31

oy Fedes o T V1 AV TR L ACA TR

e i o wid &

ik
.ﬂd,’;*’ 143y

ek

\if ye ey

»z‘ﬁ,

5
o o RN
i Ao e
i;;@;w S

i

%

LRAPEOM o At Mt

A T o

X

Figure 4.7: Automatically generated explanation of SA recommendation

‘ B
tHost Hardware s

2y

TamperProof.:

amper 2.roo
T

RS

TR TN L T el

Figure 4.8: SA survey screen for the host (excerpt)

(X Netscape: Deslgn Expert - Security Environment Summary |

Host Survey
Host Profile

Host Quass s a SUN Microsystems desktop workstation, running the SUN CHMW operating
system. {thas the following periphersl devices: a color monitor, an extemal disk, and a keyboard.

Host Connactlvity end Usage

Qauss Is connected to SIRPNet via a reuter, Itls an MPATS system host and the following MPATS
tunctlos ere deployed on it FPLAN, FTRACK, and Wx (Weather Forecasting).

Host Sscurlty Atirdlastos

Jauss is a millevel host with a highest classifzadon level of SECRET, ltuses Smart Card as the
suthentcation mechenlsm,

Clase

Figure 4.9: Summary of SA survey for a host

33

Chapter 5

Automatic Explanation Generation in
DesignExpert

5.1 Expert System Explanation

Expert systems were one of the first applications to emerge from initial research in artificial
intelligence, and the explanation of expert system reasoning was one of the first applica-
tions of natural language generation. This is because the need for explanations is obvious,
and generation from a knowledge-based application such as reasoning should be relatively
straightforward. However, while explanation has been universally acknowledged as a desir-
able functionality in expert systems, natural language generation has not taken a central
place in contemporary expert system development. For example, a popular text book about
expert systems such as (Giarratano and Riley, 1994a) stresses twice in the introduction the
importance of explanation, but provides no further mention of explanation in the remaining
600 pages. (The book is based on the popular CLIPS framework.) In this paper, we present
a new approach to enhancing an expert system with an explanation facility. The approach
comprises both software components and a methodology for assembling the components.
The methodology is minimally intrusive into existing expert system development practice.

This chapter is structured as follows. In Section 5.2, we discuss previous work and identify
shortcomings. We present our analysis of knowledge types in Section 5.3. Section 5.4 dis-
cusses the relation between the Security Assistant and its explanation facility. Finally, we
sketch a general methodology for explainable expert system engineering in Section 5.5.

34

5.2 Previous Work

A very important early result (based on experiences with explanation® in systems such as
MYCIN (Shortliffe, 1976)) was the finding that “reasoning strategies employed by programs
do not form a good basis for understandable explanations” (Moore, 1994, p.31). Specifically,
simply paraphrasing the chain of reasoning of the expert system does not let a human user
easily understand that reasoning.

Two separate approaches have been proposed to address this problem:

o In the Explainable Expert System (EES) approach (Swartout et al., 1991; Swartout
and Moore, 1993), the knowledge representation used by the expert system is enriched
to include explicit “strategic” knowledge, i.e., knowledge about how to reason, and
domain-specific knowledge. From this knowledge, the rules used by the expert system
are compiled, and this knowledge is also used to provide more abstract explanations
of the system’s reasoning.

e In the Reconstructive Explainer (Rex) approach (Wick, 1993), the expert system
is unchanged, but after it has performed its reasoning, a causal chain for explanation
is constructed from the input data to the conclusion reached previously by the expert
system as a separate process. The work of (Tanner et al., 1993) can also be seen as
falling in this paradigm, since a separate representation of knowledge (the “functional
representation”) is used only for explanation, and the explanation must be specially
derived from this.

These approaches have in common a preoccupation with a categorization of knowledge used
in the system into different types. EES concentrates on an abstract representation of strategic
knowledge (how does a particular action of the system relate to the overall goal?) and on the
representation of design rationale (why are actions reasonable in view of domain goals?). In
addition, there is terminological domain knowledge (definitions of terms). Rex and related
approaches have a representation of domain knowledge, along with domain rule knowledge
(mainly causality), which is completely separate from that used by the expert system itself.
This knowledge is used to derive an “explanation path” through the domain knowledge
representation.

There are problems with both approaches. EES has not proven to be a fully satisfactory
solution to the problem of expert system explanation. The problem is that the writers of
expert systems have not been too quick or too eager to adopt frameworks such as EES. The
requirement for a more abstract representation of knowledge (from which the actual expert
system rules are compiled) that EES imposes may be considered onerous by the expert
system developer, appearing unmotivated from the point of view of the core functionality of

'We do not consider explanation generation from data bases (for example, (McKeown, 1985; Paris, 1988;
Lester and Porter, 1997)) to be the same problem as expert system reasoning explanation (even though we
may usc some similar techniques). In data base explanations, the knowledge to be communicated is static
and its representation is given a priori as part of the statement of the generation problem. In expert system
explanations, the knowledge to be explained is generated dynamically, and the proper representation for this
knowledge is part of the solution to the problem of expert system explanation, not its statement.

35

the system, namely reasoning (as opposed to explanation). Presumably, it is difficult for one
and the same person to be a domain expert and a expert on communication in the domain.

In the Rex approach, the obvious problem is that in order to generate an explanation,
additional reasoning must be performed which in some sense is very similar to that done by
the expert system itself (e.g., finding causal chains). This is redundant, and does not result
in a clear separation between reasoning and explanation. While Wick (1993) argues against
such a separation on philosophical grounds, practical constraints suggest, as indicated above,
that the domain expert responsible for implementing the reasoning system should not also
be responsible for implementing the explanation capability, and that the communication
engineer (responsible for implementing the explanation facility) should not need to replicate

domain reasoning.

In this paper, we present a new approach (architecture and methodology) to expert system
explanation which does not require the expert system writer to take into account the needs
of the explanation while writing the rules. At the same time, we avoid the necessity of having
a separate domain reasoning component for the explanation generation. Instead, the expert
system is largely considered a stand-alone application, onto which explanation is added.
However, this is done by having a communication engineer design a second knowledge repre-
sentation (separate from the expert system’s domain knowledge representation) specifically
for the purpose of communicating explanations. This representation is instantiated by the
expert system as it reasons, not by a separate module after reasoning has occurred. Thus,-
no separate reasoning facility is needed.

5.3 Types of Knowledge in Explanation

We follow previous work in distinguishing different types of knowledge. However, we use
operational criteria: we classify knowledge by what it is used for and who is responsible for
its engineering, not by its structure or contents. We briefly present our classification here
and illustrate it on an example in the following section.

e Reasoning domain knowledge (RDK). This is knowledge about the domain needed
to perform the reasoning. Typically, it includes rules, terminological knowledge, and
instance knowledge. It is encoded by the domain expert in the expert system proper.

e Communication domain knowledge (CDK). This is knowledge about the domain
which is needed for communication about the domain. It typically is a different “view”
on the domain knowledge than RDK, and may include additional information not
needed for the reasoning itself. It is encoded by the communication engineer in the
explanation facility.

e Domain communication knowledge (DCK). This is knowledge about how to com-
municate in the domain. DCK typically includes strategies for explanation in the given
domain, and knowledge how to describe the entities of the domain. It is encoded by
the communication engineer in the explanation facility.

36

The distinctions may at first secem overly fine-grained. However, each type of knowledge is
distinguished from the other types. CDK is domain knowledge, but it is domain knowledge
that is needed only for communication, not for reasoning (as is RDK). RDK and CDK of
course overlap, but they are not identical. This is in fact the lesson from much previous
work in expert system explanation, for example the work of Paris et al. (1988) contrasting
“the line of reasoning” and “the line of explanation”, and the claim of Swartout et al. (1991)
that the domain representation must be augmented with additional knowledge about the
domain and about reasoning in the domain. Many researchers have identified the need for
packaging domain knowledge differently for communication. For example, the “views” of
Lester and Porter (1997) can be seen as a form of CDK, though they are not a declarative
representation. What is new in our work, however, is the proposal that CDK should be
represented explicitly in a distinct representation from the domain knowledge.?

CDK is different from DCK in that CDK is knowledge about the domain as it is needed
for communication, but DCK is knowledge about how to communicate in that domain (and
in a specific communicative setting characterized by factors as diverse as communication
type or genre, hearer needs, communication medium, or cultural context). Therefore, for
expert system explanation applications, CDK is conceptual knowledge (what conceptual
content must be conveyed to the user to explain system reasoning effectively?), while DCK
is knowledge about language use (how do we use linguistic acts to explain system reasoning
effectively?).® DCK may be expressed in communicative plan operators which achieve goals
related to the hearer’s cognitive state, while CDK would never include plan operators related
to the hearer’s cognitive state because the hearer is not part of the domain of the expert
system.

5.4 The Security Assistant

The Security Assistant or SA (see Chapter 4 and also (Webber et al., 1998)) is part of the
DesignExpert tool which helps software engineers analyze system-wide (or “non-functional”)
requirements such as security, fault-tolerance, and human-computer interaction. The SA

2While CDX is closely related to content selection, it should not be equated with content selection,
which is often seen as the first task in text planning (followed by content ordering). Content selection
is entirely oriented towards the anticipated act of communication, and hence defined by its parameters:
what the communicative goal is, what the medium is, who the hearer is, and other constraints (length of
communication, and so on). CDK is knowledge needed for content selection, but excludes all choices that
depend on knowledge of the intended act of communication. For example, CDK might include relative
salience between domain objects, but does not include information about how salicnt an object needs to
be in order to intercst the hearer. However, we admit that the distinction may be blurred, especially in
implementations.

3While DCK is domain- and genre-specific knowledge about how to communicate, we do not claim that
the same type of reasoncr with different domains (say, an expert system for car repair and an expert system
for helicopter repair) would necessarily require different DCK. However, the type of expert system in the
two cases might be very similar, and it is this fact that would allow us to re-use the same DCK. Thus, from
the point of view of the explanation system, the “domain” is not the domain of the expert system, but the
type of the expert system. For a discussion of the distinction between domain communication knowledge
and domain-independent communication knowledge, and for an argument in favor of the need for DCK, see
(Kittredge et al., 1991).

37

aids a software engineer in choosing security measures to protect valuable system assets (e.g.
important data) against likely threats (e.g. disclosure or corruption). In the following three
subsections, we discuss how the three types of knowledge discussed in the previous section
~ RDK, CDK, and DCK, are represented and used in the SA.

5.4.1 The Expert System: Reasoning Domain Knowledge

The SA first queries the user for information about entities of the system to be analyzed, such
as system assets, system components, and system sites, and the damage types that are of
concern for these entities. Additional damage types are inferred for each important asset of
a system (e.g. data can suffer from disclosure or corruption). The system then reasons about
possible defenses that directly prevent these damage types. If no single complete defenses
can be found, the SA determines all attack methods which can cause the damage, and then
deduces all enabling conditions for such attacks. It subsequently determines defenses that
prevent such enabling situations. This reasoning can then be iterated. The result of the
SA’s reasoning is a list undefended assets and, for each such asset, a a list of recommended
defenses.

For example, suppose direct modification by a malicious user has been identified as a possible
damage to a system asset (say, a database), and that the SA can determine no immediate
defense against direct modification (for example, it is impossible to disable all editors).
Modification is only possible after the malicious user has gained illegal access to the system.
In this case, we would say that illegal access enables modification. A defense against illegal
access is therefore also a defense against modification.

The knowledge needed for reasoning is expressed in the usual manner as production rules
which, if the conditions are met, assert the existence of new damages, defenses, enabling
conditions, and so on.

5.4.2 The Content Representation Graph: Communication Do-
main Knowledge

In SA, the starting point for expressing CDK is a domain model of the type that is used in
object-oriented design and analysis. Our domain model (Figure 5.1) represents security do-
main concepts, various attributes and concept relationships, as they are used in explanation.
The domain model was created by analyzing how a domain expert would explain the rea-
soning of the SA to non-experts, using a small corpus of explanations. Each of the boxes in
the model stands for a concept in the security domain, and inside these boxes are attributes
associated with the concept. Arrow-tipped edges represent relations between concepts in the
domain model Database, triangle-tipped edges represent is-a relations and diamond-tipped
edges are has-a relations. Some examples:

o Defense objects have id (name) and cost attributes;

e Damage objects have id, severity and type attributes;

38

System

N . Attack
ProtectedObject harms Damage causes ”
id i < type
sustains type ? enables
> > e
/
A A prevents prevents
Site
System component .
- P focgtion _fid Defense
security Plteatures .
= hostility id
characterist™" cos
; Is associated with
has Jocation .
location
Asset - -
Mission 3 € n | agent
id type {geographic_location
importance importan features
ce
has P | Person |&

Figure 5.1: The domain model

e prevent is a relation that holds between a Defense instance and a Damage instance;
e Site, Asset and System component are different sub-classes of ProtectedObject;

e A System consists of one or more System components.

The CDK expressed in this domain model has no role in the expert system reasoning. In
fact, during the reasoning process, the expert system models the relations as primary ob-
jects, and the concepts of our domain model are merely slots of the relations in the expert
system. As a result, the relations typically are not binary, but n-ary. In contrast, the do-
main model contains only binary relations. This reflects, we claim, the difference between
the optimal way of representing knowledge for machine reasoning, and the way in which
humans model the world (which is what the CDK domain model captures). As an example
of the difference in relations, the relation that corresponds to the CDK domain model’s pre-
vent relation between Defense and Damage corresponds to, in the reasoning component, a
quintary relation between the defense, the location of the defense, the damage it prevents,
the locations at which it prevents the damage, and the damages that negate the defense.
Another example is the likely_attack_method relation used in RDK (and its structural clone,
the possible.attack_method relation) of the reasoning component, which is a ternary relation
between an asset, a location, and an attack method. As can be seen from the domain model
diagram, this relation is not modeled in CDK at all.

Knowledge about domain concepts and relationships is not sufficient for generating an ex-
pressive explanation. Additional CDK is required in order to select and organize content

according to explanation type and length limitation. The domain model is therefore aug-
mented with the following information.

39

e Importance level, which is defined for every relation and attribute. This information
about relative importance of attributes and relations enables us to produce explana-
tions of different length. For example, the relation prevent between Defense and Dam-
age has higher importance level than the relation have between SystemComponent and
Mission. In our domain model, we use a two-valued scale.

e A key attribute for each concept which is required in instances of the concept and
which identifies an instance of the concept. For example, id is a key attributes for Site
but HostilityCharacteristic is not a key attribute.

e Mutual dependencies among concept relations and attributes. This information covers
cases in which a particular relation or attribute can be presented only if some other re-
lations or attributes are presented. For example, the relation prevent between Defense
and Attack should be included only if the relation cause between Attack and Damage
is included as well.

e Order among relations and order among attributes of the same concept, namely in
what order should relations of the concept be presented, e.g. for concept damage arc
goal is ordered before arc enable.

e Meta-relations between relations of the same concept. For example, there is a meta-
relation purpose between (Defense prevent damage) and (Defense is associated with
ProtectedObject).

To derive the CDK needed for a specific explanation task, the augmented domain model is in-
stantiated. While the reasoning component performs the reasoning proper, it also populates
the concepts of the augmented domain model with instances. The result is an instantiated
model that contains concept instances, and attributes bound to their values. We called this
instantiated model the “content representation graph” (CRG) of the explanation. The CRG
contains all the information that is needed for the generation of the explanation text. An
example of a CRG is shown in Figure 5.2. '

5.4.3 Text Planning: Domain Communication Planning

As already mentioned, the CRG does not determine the form of the text, but only restricts its
content. We implemented two different text types that build different text plans (and hence
different texts) from the same CRG. The first type is intended to be used in an interactive
setting, where the user can request more information if he or she is interested in it, by
clicking on hyperlinks. An example is shown in Figure 5.3, where hyperlinks are shown by
underlining. '

However, for the DesignExpert application it is also necessary to generate explanations that
are free of hypertext for inclusion in printed documents. These texts must include the entire
explanation at a level of detail appropriate for the kind of expected reader. An example is
shown in Figure 5.4. In order to create hyperlink-free explanation text, the CRG must be
traversed according to constraints at every nodes: which attributes to use to describe the

40

Defense , [Attack Damage

id: Nondiscretionnar ¥ type: illegal lodal-togin id: Illegal access
security measuroes.

1 1 2
ian e | "Purpose
Site Damage [oweed | Attack
R . type: substitutfbn | type: Direct
id: Ramstein modification
1
Asset
id: fdplan
type: data assdt

Figure 5.2: The content representation graph (instantiated domain model) for the example,
representing the full CDK

Nondiscretionary security measures are required on the Ramstein site.

e Which damage do nondiscretionary security measures prevent?

e Which assets do nondiscretionary security measures protect?

Figure 5.3: The interactive hypertext

Nondiscretionary security measures are required on the Ramstein site in order to
prevent substitution of data asset “ftdplan”. These measures prevent substitution
because they prevent illegal local login to the Ramstein system, which may enable
illegal access. Illegal access may enable direct modification of data asset “ftdplan”,
and direct modification may cause substitution. ’

Figure 5.4: The fluent, hyperlink-frec text

41

object, which relations of this object with other object must be presented in explanation,
in what order to present the relations and what are meta-relationship between them. The
planner processes every graph edge according to specified order, and structures resulting
phrases with respect to meta-relations.

For both text types, we used a text planner with a declarative formalism for text plan
specification, which directly expresses the DCK (Lavoie and Rambow, 1998). Other repre-
sentations of domain-specific text planning knowledge could also have been used, and we
omit details of the formalism here.

5.5 Methodology

We propose the following methodology for developing an explainable expert system. We
assume three roles, that of the domain expert (where “domain” refers to the domain of
the expert system, such as computer security or infectious diseases), knowledge engineer
(a specialist in eliciting and representing domain models, specifically in the form of expert
systems), and a communication engineer (a specialist in analyzing and representing the
knowledge needed for efficient communication).

1. The knowledge engineer creates the expert system in consultation with the domain
expert, using any sort of tool or shell and any sort of methodology that are convenient.

9. The domain expert writes several instances of (textual) explanations of the type needed
for the application in question, based on scenarios that the expert system can handle.

3. The communication engineer analyzes the corpus of hand-written explanations along
two lines:

e The domain concepts that are reported in the text are analyzed and recorded using
an object-oriented modeling technique, perhaps augmented by more expressive
constructs, such as meta-relations (relations between relations). This structure
is the content representation graph, represents the CDK (both the augmented
domain model and its instances).

e The structure of the text is recorded using some notation for discourse structure
suitable for the text planner being used in the text generator (say, RST (Mann
and Thompson, 1987)).

4. Using the CDK representation, the communication engineer consults with the domain
expert and the knowledge engincer to define a mapping from the domain representation
used by the expert system to the CDK domain model devised by the communication
engineer. The communication domain knowledge representation may be modified as a
result. .

5. The knowledge engineer adds rules to the expert system that instantiate the communi-
cation domain knowledge representation with instances generated during the reasoning
process.

42

6. The communication engineer designs a text planner that draws on the knowledge in the
CDK representation and produces text. This task involves the creation of an explicit
representation of DCK for the domain and task (and genre) at hand.

The resulting system is modular in terms of software modules. The expert system is preserved
as a stand-alone module (though its rule base has been somewhat extended to identify
communication domain knowledge), as is the text planner. Both modules can be off-the-
shelf components. Only the CDK representation is designed in a task-specific manner, but
of course standard knowledge representation tools, object-oriented data bases, or the like
can be used.

In addition, the methodology is modular in terms of tasks and expertise. The domain expert
and knowledge engineer do not need to learn about communication, and the communication
engineer does not need to understand the workings of the expert system (though she does
need to understand the domain well enough in order to design communication strategies for
it, of course).

5.6 Conclusion

We have developed an approach to expert system explanation which is based on a clas-
sification of types of knowledge into reasoning domain knowledge, communication domain
knowledge, and domain communication knowledge. We have argued that this distinction, in
addition to being theoretically appealing, allows us to better manage the software engineering
aspect of explainable expert system development.

While we think that our approach is well suited to explaining the reasoning of expert systems
to users after the fact, the approach does not, at first glance, appear to lend itself very well
to answers to “Why are you asking?” type questions from the user (as opposed to “Why
are you recommending this?”, which is what the SA answers). This is because the CDK is
not intended to mimic the system’s reasoning. However, it may be possible that the same
kind of CDK can be used to answer questions before the reasoning is complete. We hope to
investigate this in future work.

43

Chapter 6

The Human-Computer Interaction
Assistant

6.1 Overview of HCIA

The goal of the HCIA research and development project (originating in its predecessor,
DesignPro) has been to provide the following support to developers during system user
interface development life cycle:

1. For new or evolving capabilities of the system, as part of the requirements analysis,
HCIA elicits from the developer various characteristics of the capabilities in question
and of goals of the system as a whole that are relevant to HCI, and then provides
HCI expert advice on the user interface with the system in the light of the elicited
characteristics of the system and problem domain.

2. For the prototyped or implemented user interface, as part of the system evaluation,
HCIA provides an assessment and a critique of the interface, taking into account the
goals of the system, the HCI-relevant characteristics of the system elicited during the
requirements analysis and the given advice.

The HCIA has two components, each corresponding to one of the two tasks above. The
HCIA Advisor addresses the first task above. It was designed and implemented by Drexel
University (under the supervision of Dr. Lee Ehrhart, following previous work under the
name DesignPro) and later reimplemented and improved by CoGenTex. The HCIA Critic
addresses the second task above. It was designed and implemented by CoGenTex with
support from Dr. Scott Overmyer of Drexel University. This critiquing component focuses
on HTML-based interfaces. The following two sections present these two systems in turn.
The final section of this Chapter contains a summary of the guidelines that we have used in
developing the HCIA Ciritic.

44

6.2 The HCIA Advisor

At the core of the Advisor facility of the Human-Computer Interaction Assistant (HCIA
Advisor) is the concept of “interaction” with computers, information, problems, algorithms,
displays, etc. We regard interaction as any exchange between human and digital-electronic
systems. Using the “interaction” paradigm, the HCIA Advisor knowledge base synthesizes
findings from research in the cognitive sciences with knowledge about the information display
and interaction technologies to support human-computer interaction analysis, prototyping,
and evaluation.

: Requirements § Design Issues Design Advice

Evaluation

lojolelolelo|ololelfl.5

Figure 6.1: Sample HCIA Advisor questionnaire for task characteristics

The HCIA Advisor user first identifies the kinds of cognitive tasks the users may be required
to perform and examine the factors affecting performance. If a task affects decision per-
formance, it is necessary to find out what characteristics of the task do so. Meister (1981)
identifies five task dimensions that may affect performance:

e Functional requirements (cognition, perception, etc.)
e Complexity
e Mental workload

o Temporal factors (pace, duration, sequence, etc.)

45

e Criticality

Cognitive task taxonomies, such as those found in (Fleischman and Quaintance, 1984) and
(Rasmussen et al., 1990) can be used as a filter to identify and categorize basic cognitive
tasks with respect to these dimensions. In addition, Andriole and Adelman (1995) present a
taxonomic discussion of human information processing and inferencing tasks with respect to
the potential cognitive errors associated with each. These sources and others were used in the
design of the HCIA Advisor to define a set of task characteristics (e.g., task complexity, etc.)
for which the user sets parameter values using a simple categorization of High-Medium-Low.

More precisely, the HCIA Advisor queries the user for information pertaining to four areas:

e users — experience, training, organizational roles;

e tasks — high-level functions, performance goals, decision task characteristics (e.g.,
timing, criticality, etc.);

e organizational context — organizational goals, missions, control structures, communi-
cation modes, “culture”;

e and environmental context — when, where, how, and under what conditions the system
will be used.

In addition, the HCIA Advisor requires the user to further bound the design options by
identifying:

e any system-level constraints (such as hardware platform, storage limitations, operating
system, etc.);

o and project variables (such as contract flexibility and project team composition).

To aid in this definition, the system provides descriptions of each task characteristic and
an explanation of the criteria for assigning the parameter value. Space is also provided for
user annotation to explain the designer’s rationale for the rating given the characteristic
in the context of the project. As an example, the HCIA Advisor questionnaire for task
characteristics is shown in Figure 6.1.

Once the profiling is accomplished and constraints are specified, the analyst submits the
requirements to the HCIA Advisor knowledge base for design suggestions regarding tech-
nologies and techniques for user-machine dialog, information presentation, and other in-
terface and interaction design features. HCIA Advisor presents design advice for specific
technologies and techniques in three categories.

1. data and information coding;
2. display design and features;

3. and dialog and interaction styles

46

Requirements] Design Issues | DeslgnAdvice

| HClAHome S

examples of data & lnformatlon codlnu optlons L L

it Feature Class

Unidimensional

Figure 6.2: Sample HCIA Advisor design advice for data and information coding

The HCIA Advisor presents definitions and an example for each possible feature and a
recommendation as to its appropriateness for the system under development. Figure 6.2
shows a sample HCIA Advisor design advice for data and information coding.

To complete the lifecycle support, the HCIA Advisor provides reference information on the
critical design evaluation issues and suggests approaches to evaluation of the HCI design,
user performance, and system usability. The evaluation screens identify and describe a range
of objective and subjective methods for assessing performance and workload (a sample screen
is shown in Figure 6.3). Throughout the HCIA Advisor, HTML links connect the user to
further information available online.

The HCIA Advisor is designed to be used by analysts and design decision makers, including
domain knowledgeable customers (e.g., operational end-users, domain experts, etc.) and soft-
ware development practitioners (e.g., project managers, analysts, designers, programmers,
quality experts, etc.).

The HCIA Advisor can be extended by creating new cases that reflect issues such as the
following:

1. Significant changes in interface technology or interaction paradigms.

2. Application of HCIA Advisor templates to domains that are not characterized primarily
as control systems or decision support systems (e.g., accounting, data warehousing

47

Expert ETHETRIZEY
NG Bvakaetion Avioe: Ghjective Mewsures 15]
. . . 7’.‘.‘?"',“”" s

Pocmunes Messares
Toskrorhemencs R e

Figure 6.3: Sample HCIA Advisor evaluation advice

applications, etc.).

In each case, the extension of the knowledge base requires either an understanding of the
cognitive system engineering principles and related research that support them or sufficient
experience and expertise to make the necessary judgments. The changes are simply made
to a Microsoft Excel file which, in a simple format, represents the HCIA Advisor knowledge
base. This Excel file is then compiled into a format that the HCIA Advisor can access
directly.

6.3 The HCIA Critic

As mentioned above, the HCIA Critic provides an assessment and a critique of a particular
interface as part of the evaluation phase. The HCIA Critic takes into account the goals of

48

the system, the HCI-relevant characteristics of the system elicited during the requirements
analysis, and the given advice.

| 1 systen: civilian population. ailitary personnel end nilitary 21
| Control | bases. B8

INTERNAL ASSETS A

File:[
Eopen | SHTHC] £ehacks] ERésets| TaTp
Raport: [Formatting I ldentiflcation ;
I"Orsanlzatlon I Navigation E Parts Inventory.

User’ Guldo™™ Flights database.

Flight tracking datsbase.

[Reporl WEsys data store.
7: plan configuration flles,
| Formatting track configuration files.

fsys contfiguration files.
plan executable flles.
track executable files.
fsys executable f[iles,

Na stytestaeto found)

Heades of lower level fofiowing header of higher levelt

Al upper-cases text segment!

Size of secontiary conslituest bigger than cire of prinasy
counstituent]

. DIV styio= FONI-SIZE: 12At >Tho following 1ict chowe tho
{ Explanation | internal assets (data, component end applicetion): </DiV>

5B R
=

| IV style="FONT-SIZE: I4pt"> o
| L 4]
oro clonlficant Informaticn lo.norsally 1 Parts inventory. b4
ordered 1irst and presented vith a blgger Flights database. Xy
slze, 1 Flight tracking database. e

1 <LI¥¥feye data storo.
| <LIsFplan confliguration {iles.
i <L=>Ftrack contiguration files.

feve rnnfinnrat inn 'rlae e

Figure 6.4: Sample HCIA Critic main page

The HCIA Critic focuses on HTML-based interfaces. This choice was made, in consultation
with Prof. Scott Overmyer of Drexel, for three reasons:

. 1. The vast popularity of such interfaces provides abundant material for the validation of
the critiquing component.

2. The relatively limited "vocabulary” of HTML-based interfaces (as compared with
generic GUI possibilities) makes the assessment and critique more focused and con-
crete. The critique is performed according to the best publicly available HTML style
guidelines.

3. There are currently no tools critiquing the style of HTML-based interfaces using style
guidelines.

HCIA Critic checks HTML documents for possible violations of web style guidelines, such
as those published by Yale or Ameritech. The application reports the results of the checking

49

oSt Lt N

Report

Formatting
No stylesheets found! if
Header of lower level following header of higher levell i
]

Allupper-cases text segment! i
Size of secondary constituent bigger than size of primary |
constituent!

Identification

« No TITLE tag found!
« Shott headet!

R R R AT e s

Organization

. Longunstructured list!

AR ISR

Navigation i

» No navigation links found!

Figure 6.5: Sample HCIA Critic report

using dynamic HTML to highlight the sources of the errors in the rendered documents and
in their HTML specifications.

Figure 6.4 shows a sample main page of the HCIA Critic. The Control Frame (at the top
left) contains buttons controlling document selection and the content of the other frames.
Using this frame, the user selects an html page to load into the HCIA Critic. After loading,
the Rendered Document Frame (top right) displays the selected document, rendered by
the browser, while its html source code is shown in the frame below it. (in the example in
Figure 6.4, the page being analyzed lists internal assets of a site. The relation to the Security
Assistant is purely accidental.)

After the page is loaded, the HCIA Critic analyzes the page. The Report Frame (middle
left frame) then displays the results of checking the selected document. Figure 6.5 shows the
full report for the example. The bulletized items are error messages with hyperlinks which
allow the user to get more details about the errors. The activation of a link associated with
an error message generates an explanation for this error message in the Explanation Frame
(just below the Report frame). In addition, clicking on an crror message also highlights the
effect and/or the cause of the error in the Rendered Document Frame and/or in the HTML

50

Frame.

51

6.4 HCIA Critic: Support for Yale’s Web Requirements and
Guidelines

This section describes a list of Web requirements and guidelines based on the Yale Style
Guide (Lynch, P. and Horton, S. (1998) Yale C/AIM Web Style Guide. Center for
Advanced Instructional Media at Yale University.

Available at: http://info.med.yale.edu/caim/manual/contents.html) that are supported to
some extend in HCIA Critic.

Formatting.

e Avoid table borders altogether, use spacing and indentation instead.
e Use HTML heading tags but not font and styles in headers — otherwise search engines
will have difficulties
e Avoid all uppercase headlines
e Don’t capitalize every word (legibility depends on the tops of words)
e Use proven publishing standards (like Xerox Publishing Standards):
e Capitalize initial letters in :
e document titles
¢ other web sites
e titles of documents referred to within the text
e proper names, product and trade names
o Capitalize only first word in
e subheads
e references to other headings within the text
o figure titles
o lists
e Use as few heading styles as possible (2)
e Avoid too long lines of text (limit 8cm/3in or 40-60 chars by line). It is approx Y2 of
normal width of a Web page, allows people to read without moving their head
e Avoid fonts not supported by Windows or MacOS (non-supported fonts will be
substituted with unpredictable effect)

e Avoid the combination of <TABLE> and tags because it could be
unpredictable

Use “invisible” tables for layout (non-intended use of tables)

Avoid excessive markup: too many links or too many styles of typelace

Your link colors should closely match your text color, avoid screaming colors
Avoid special characters (not supported by standard HTML) and auto hyphens
Avoid sentences organized around a link phrase such as “click here for more
information”

Remember that for reading links are a distraction, use carefully in text

e Group all minor, illustrative, parenthetic, or footnote links at the bottom of the
document where they are available but not distracting

52

Organization.

Avoid unnecessary scrolling — it is bad in general because the reader loses context

and gets disoriented '

A web page, even meant for down loading, should not be longer than 2-3 printed

pages

Users prefer few very dense screens to many layers of simplified menus

For a long down loadable text, have it on a link as a file. In that file, always include

the url of the on-line page which points to the file.

Use modular design for easy update —urls remain contact even if pages change

Keep short:

home page,

¢ menu and navigation pages,

e documents to be browsed and read on-line,

¢ pages with very large graphics (Yale guide has a table of recommended sizes for
graphics)

Menus should be short but not too short: recommended minimum 5 to 7 links

Each page should be self-contained and contain all the essential uniform links, name
of the company or the web site

Home page should have a menu

Avoid slowly loading graphics, especially at the top of home page: Estimated
“frustration threshold” — 10- sec

Always have “what’s new” for big sites

Consistency.

Try to achieve “invisible interface” by uniformity of your pages
Maintain uniform:

e layout grid

titles, subtitles

o footers
e links
Navigation.

All the links on home page should be “inward”

Always have top and bottom (especially on pages that scroll) bar with all major links
on every page

Provide a “home page” link on every page

53

Use bottom bars to display location, to orient user in the site context

Always have a “signature header” on pages where users can come from outside
Provide a link to site editor for complaints/comments on every page

Provide a FAQ and “related sites” links, they are always appreciated by visitors
Provide origin and age of the page

All links should be current (functional)

54

Bibliography

(1985). Trusted Computer System Evaluation Criteria. US Department of Defense.

Andriole, S. J. and Adelman, L. (1995). Cognitive Systems Engineering for User-Computer
Interface Design, Prototyping and Evaluation. Lawrence Erlbaum, Hillsdale, NJ.

Avizienis, A. and Kelly, J. (1984). Fault tolerance by design diversity. IEEE Computer,
17(8).

Barzilay, R., McCullough, D., Rambow, O., DeCristofaro, J., Korelsky, T., and Lavoie,
B. (1998). A new approach to expert system explanations. In Proceedings of the 8th
International Workshop on Natural Language Generation, Niagara-on-the-Lake, Ontario.

Davis, A. M. (1994). Software Requirements: Objects, Functions, and States. Prentice-Hall,
Inc., Upper Saddle River, NJ, 2nd edition.

DoD Instruction 5200.40. DoD Information Technology Security Certification and Accredi-
tation Process. DISA.

Ehrhart, L. S., Andriole, S. J., Monsanto, C., Hibberd, B. J., and Flo, R. (1996). Designpro:
Expert advice for information interaction design, prototyping, and evaluation. In Pro-

ceedings of 1996 Sizth Annual Dual-Use Technologies Applications Conference, Syracuse,
NY.

Fleischman, E. A. and Quaintance, M. K. (1984). Tazonomies of Human Performance: The
Description of Human Tasks. Academic Press, New York.

Garlan, D., Monroe, R. T., and Wile, D. (1997). Acme: An architecture description inter-
change language. In Proc. CASCON ’97.

Giarratano, J. and Riley (1994a). Ezpert Systems: Principles and Programming. PWS
Publishing Company, Boston.

Giarratano, J. and Riley, G. (1994b). Ezpert Systems, Principles and Programming. PWS
Publishing Company.

Kittredge, R., Korelsky, T., and Rambow, O. (1991). On the need for domain communication
knowledge. Computational Intelligence, 7(4).

Lavoie, B. and Rambow, O. (1998). A framework for customizable gencration of multi-modal
presentations. In 86th Meeting of the Association for Computational Linguistics and 17th

International Conference on Computational Linguistics (COLING-ACL’98), Montréal,
Canada. ACL.

Lester, J. C. and Porter, B. W. (1997). Decveloping and empirically evaluating robust expla-
nation generators: The KNIGHT experiments. Computational Linguistics, 23(1):65-102.

Mann, W. C. and Thompson, S. A. (1987). Rhetorical Structure Theory: A theory of text
organization. Technical Report ISI/RS-87-190, ISI.

39

McKeown, K. (1985). Tezt Generation. Cambridge University Press, Cambridge.

Meister, D. (1981). Behavioral Research and Government Policy: Civilian and Military R
& D. Pergamon Press, New York.

Moore, J. (1994). Participating in Ezplanatory Dialogues. MIT Press.

National Institute of Standards and Technology et al. (1996). Common criteria for informa-
tion technology security evaluation. http:// csre.nist.gov/nistpubs/cc.

Nieuwenhuis, L. (1990). Static allocation of process replicas in fault tolerant computing
systems. In IEEE Symp. Fault Tolerant Comp.

Paris, C., Wick, M., and Thompson, W. (1988). The line of reasoning versus the line of
explanation. In Proceedings of the 1 988 AAAI Workshop on Ezplanation, pages 4-7.

Paris, C. L. (1988). Tailoring object descriptions to a user’s level of expertise. Comyputational
Linguistics, 14(3):64-78.

Rasmussen, J., Pejtersen, A.-M., and Goodstein, L. (1990). Taxonomy for cognitive work
analysis. Technical Report Riso M-2871, Riso National Laboratory, Roskilde, Denmark.

Shortliffe, E. H. (1976). Computer-Based Medical Consultations: Mycin. American Elsevier,
New York. '

Siewiorek, D. and Swarz, R. (1982). The Theory and Practice of Reliable System Design.
Digital Press.

Swartout, W. and Moore, J. (1993). Explanation in second generation expert systems.
In David, J.-M., Krivine, J.-P., and Simmons, R., editors, Second Generation Ezpert
Systems, pages 543-585. Springer Verlag.

Swartout, W., Paris, C., and Moore, J. (1991). Design for explainable expert systems. IEEE
Ezpert, 6(3):59-64.

Tanner, M. C., Keunecke, A. M., and Chandrasekaran, B. (1993). Explanation using task
structure and domain functional models. In David, J.-M., Krivine, J.-P., and Simmons,
R., editors, Second Generation Ezpert Systems, pages 586-613. Springer Verlag.

Webber, F., McEnerney, J., and Kwiat, K. (1998). The DesignExpert approach to developing
fault-tolerant and sccure systems. In 4th Int’l Conf. on Reliability and Quality in Design.

Wick, M. R. (1993). Second generation expert system explanation. In David, J.-M., Krivine,
J.-P., and Simmons, R., editors, Second Generation Ezpert Systerns, pages 614-640.
Springer Verlag.

U.S. GOVERNMENT PRINTING OFFICE: 1001_710_033-\0187

56

MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of Information Systems Science
and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

